Marrying Artificial Intelligence With Linear Scaling Quantum Simulations: The Next Frontier For Novel Materials Discoveries; Towards Ab-Initio Electrochemistry

 

Prof. Pablo Ordejon
Prof. Pablo Ordejón earned his degree in physics (1987) and his PhD in science (1992) at the Universidad Autónoma de Madrid. He worked as a postdoctoral researcher at the University of Illinois at Urbana-Champaign (USA) from 1992 to 1995 and as assistant professor at the Universidad de Oviedo from 1995 to 1999. In 1999, he obtained a research staff position at the Institut de Ciència de Materials de Barcelona of the Consejo Superior de Investigaciones Científicas (CSIC). In 2007 he moved to the former CIN2 (now ICN2) as the leader of the Theory and Simulation Group, where he is currently a CSIC Research Professor. Since July 2012 he has served as Director of the ICN2.

He has published more than 210 scientific articles, which have received over 30,000 citations (h-index of 59). He was co-editor of EPL (formerly Euro Physics Letters) from 2010 to 2015, and is member of the Editorial Boards of the Physica Status Solidi journals since 2004 and Nanomaterials since 2018.

He oversaw the Condensed Matter Physics subject area of the Physics Panel of the Spanish National Evaluation and Foresight Agency (ANEP) from 2003 to 2006, and was the head of the Physics and Engineering Panel of the Access Committee to the Spanish Supercomputing Network from 2005 to 2011. He became a fellow of the American Physical Society in 2005, and received the Narcís Monturiol medal from the Catalan Government in 2018.

His research is focused on the development of efficient methods for electronic structure calculations in large and complex systems, with contributions to the development of techniques for large-scale atomistic simulations based on first-principles methods such as SIESTA. He has also been involved in the study of the fundamental properties of materials at the atomistic level. His current interests include electronic transport in nanoscale devices and electronic processes at surfaces and 2D materials, among many others. He maintains frequent collaborations with industrial laboratories on the simulation of material processes at the atomic level. He is a co-founder of the spinoff company SIMUNE.

Prof. Stephan Roche
Prof. Stephan Roche is a theoretician with more than 25 years’ experience in the study of transport theory in low-dimensional systems, including graphene, carbon nanotubes, semiconducting nanowires, organic materials and topological insulators.

He has published more than 250 papers in journals such as Nature, Review of Modern Physics, Nature Physics, Nano Letters and Physical Review Letters and he is the co-author of the book titled “Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport” (Cambridge University Press, 2020-second edition).

He received the qualification to supervise PhD students from the Université Joseph Fourier (Grenoble, France) in 2004, and since then he has supervised more than ten PhD students and about 25 postdoctoral researchers in France, Germany and Spain. In 2009 Prof. Roche was awarded the Friedrich Wilhelm Bessel Research Award by the Alexander Von-Humboldt Foundation (Germany) and, since 2011, he has been actively involved in the European Graphene Flagship project as deputy leader of the Spintronics Work Package (WP). He is serving as leader of this WP since April 2020 and will continue until March 2023. He is also Division Leader of the Graphene Flagship.